Development of track detection system in test beamlines using HL-LHC ATLAS silicon pixel detector

Rina Kugou Yamanaka lab 2022/12/22 Year-end presentation

Telescope

- Test beamlines
 - charged particle beam
 - test a detector (DUT = device under test)
- Telescope
 - reconstruct track -> reference

Resolution of telescope

existence probability density :

$$P\left(x\right) = \frac{1}{d}$$

expected value of incident position :

$$E(x) = \int_{x_0}^{x_0+d} P(x)x \, dx = x_0 + \frac{d}{2}$$

resolution :

$$\sigma_x^2 = \int_{x_0}^{x_0+d} P(x) \times (x - E(x))^2 dx = \frac{d^2}{12}$$
$$\sigma_x = \frac{d}{\sqrt{12}}$$

ITk Pixel detector (ITkPix)

ITkPix quad module

- will be used in ATLAS pixel detector
- single sensor + 4 readout asic + PCB
- > 400 x 384 pixels /asic
- pixel size : 50 um x 50 um

40 mm

Motivation

- develop high resolution telescope using ITkPix
 - pixel size of ITkPix : 50 um x 50 um
 - \succ resolution : d = 50 um

 $\sigma_x \sim 14.4 \text{ um}$

ITkPix telescope layout

- ITkPix quad module
- ✤ 6 layers
- provide trigger for DUT using self trigger signal of ITkPix

- ⇒ current ITkPix PCB cannot readout self trigger signal
- Objective : design new PCB for telescope

Design Requirements

- low amount of material
- readout self trigger signal
- compatible with ITk telescope coolingbox -
 - ➢ size : 150 mm x 150 mm
 - ➤ connectors on top
 - cooling block on bottom

Design telescope PCB

- sensor + asic wirebonded with PCB \bigstar
- \bigstar hole to reduce the amount of material
- space for cooling block *

Functions of telescope PCB

- monitor temperature on the PCB
 - using negative temperature coefficient (NTC) thermistor
 - high temperature -> low resistance
- monitor voltage or current from the different part of chip
 - readout voltage multiplexer (MUX) from asic
- readout self trigger signal
 - ➤ next page

Self trigger readout schematics

Conclusion

developing high resolution ($\sigma_x \sim$ 14.4 um) telescope system in test beamlines using ITkPix

designed PCB for telescope which can readout self trigger

Back Up

ATLAS detector

LHC (Large Hadron Collider)

- world's largest and highest energy particle collider built by CERN
- > bunches of up to 10^{11} protons collide at 40 MHz
- CM energy : 13-14 TeV
- integrated luminosity : 300 fb⁻¹ (run3)
- ATLAS detector
 - > probe p-p collision

High-Luminosity LHC upgrade

HL-LHC upgrade

- > 2029~ operation
- integrated luminosity x10
- \succ the higher luminosity, the more data
 - study known mechanisms in greater detail
 - observe new rare processes

ATLAS Inner Tracker

- ATLAS ITk
 - ATLAS Inner Detector (ID) will be upgraded to ATLAS Inner Tracker (ITk)
 - ID : pixel + SCT(strip) + TRT(chamber)
 - ITk : all silicon semiconductor tracker
 - larger coverage area
 - pixel : 2.7 m² -> 8.2 m²
 - strip : 34 m² -> 165 m²
 - higher forward coverage
 - η<2.5 -> η<4.0</p>

ITk Pixel detector (ITkPix)

- ITkPix quad module
 - > will be used in ATLAS pixel detector
 - single sensor + 4 frontend asic + flex PCB

front-end chip

> pixel detector

particle

track

size : 40 mm x 40 mm

20 mm x 20 mm (ASIC)

- > 400 x 384 pixels in one asic
- pixel size : 50 um x 50 um

HitOR bus

- pixels are grouped into the 4 HitOR busses (a chain of serially connected pixels)
- any pixel in the bus firing will cause the bus to go high
- HitOR busses used to register pixel hits and issue trigger to itself (self trigger)
- there is a configuration bit for each pixel to activate the pixel for the HitOR
 - -> We can choose region of interest (ROI) by using HitOR bus

Thermal design

- heat dissipation
 - > conduction
 - > convection
 - > radiation

Thermal network

thermal conductivity :

$$R = L \, / \, (\lambda \, \times A)$$

 λ : thermal conductivity

A : surface area

- ✤ R3 (TIM PCB)
 - $\lambda = 2.3$ W/mK (for <u>adheisive</u>)
 - A = 43E-3 × 58E-3 = 2.494E-3 m²
 - L = 50E-6 m

R = 50E-6 / (2.3 × 2.494E-3) ~ 8.72E-3 K/W

- R4 (Bare Module TIM)
 - λ = 2.3 W/mK (for <u>adheisive</u>)
 - A = 40E-3 × 42E-3 = 1.68E-3 m²
 - L = 50E-6 m

R = 50E-6 / (2.3 × 1.68E-3) ~ 0.0129 K/W

TIM

Material	In-Plane TC (W/m-K)	Thru-Plane TC (W/m-K)	In-Plane CTE (ppm/°C)	Specific Gravity	Specific In-Plane TC ¹
Aluminum	218	218	23	2.7	81
Copper	400	400	17	8.9	45
AlSiC-12	180	180	11	2.9	62
CuW	185	185	8.3	15.2	12
Carbon/Carbon	400	40	-1.0	1.9	210
CVD Diamond	1100-1800	1100-1800	1-2	3.5	310-510
TPG Graphite	1500+	10	-1	2.3	650

THROUGH-PLANE THERMAL CONDUCTIVITY

IN-PLANE THERMAL CONDUCTIVITY

http://s262196942.onlinehome.us/ArchivedMeetings/2008_Symp/ G%20-%20Thermal%20Session/Thermal_Session_1.pdf

-> in-plane TC and thru-plane TC may differ.

R6 (TIM - Coolant)

 λ = 1050 W/mK (for <u>TC1050</u>, maybe in-plane TC is much smaller) A = 43E-3 × 0.5E-3 = 21.5E-6 m²

L = 50E-3 m

R = 50E-3 / (1050 × 22.5E-6) ~ 2.12 K/W

Thermal conductivity

- calculate input impedance using LTspice
- total thermal conductivity : 1.7085 K/W
- ★ total heat dissipation : 1.6V x 6A = 9.6 W △T = 1.7085 × 9.6 = 16.4016 K

Self trigger

- 64 pixels in one core are grouped into the 4 OR networks
- HitOR busses used to register pixel hits and issue trigger to itself (self trigger)
- Has additional functionality (using the 4 different HitOr busses) to trigger on specific cluster patterns

HitOR readout schematics

Hit-OR testing layout

Probing point

Results (1) HitOR signals

Results (2) LVDS receiver output

-> LVDS receiver worked properly

Results (3) Logic OR output

-> Logic OR worked properly

Results (4) LVDS driver output

HitOR testing with AC coupling

AC coupled with 0.1uF condenser

Results (2) LVDS receiver output

-> LVDS receiver didn't worked properly

HitOR signal is not dc balanced -> supply bias voltage = 1.2v after AC couple