Momentum calibration for DeeMe experiment

Yuta Higashino

Aoki and Yamanaka Group Year-End Presentation

2022/12/22

Outline

- Introduction
- J-PARC MLF HLine
- DeeMe Experiment
 - Design
 - HV-Switching MWPC
- Progress
 - Comissionig
 - Momentum calibration
- Summary and prospects

Introduction

Charged Lepton Family/Flavour Violation(cLFV)

Yuta Higashino (Aoki lab)

- SINDRUM II @2006 (Au) 7.0 ×10⁻¹³
- SINDRUM II @1993 (Ti) 4.3 ×10⁻¹²
- TRIUMF (Ti) @1988 4.6 ×10⁻¹²

 $\mu^- + (A, Z)
ightarrow
u_\mu + (A, Z - 1)$

Decay in Orbit(DIO)

$$\mu^-
ightarrow e^- +
u_\mu + ar{
u_e}$$

$$\mu^-\!+\!(A,Z)
ightarrow e^-\!+\!(A,Z)$$

J-PARC MLF HLine

• H Line

- Large acceptance
- General purpose beam line
- In operation since January 2022

- Groups planned to use
 - DeeMe
 - ► g-2/EDM
 - MuSEUM

Design of DeeMe Experiment

- place : J-PARC MLF H1 Area
- process : $\mu^- + (A, Z) \rightarrow e^- + (A, Z)$
- Single Event Sensitivity : 1×10^{-13} (carbon,1year)

40 ms

40 ms

proton beam 600 ns

200 ns ↔

600 ns

Arbitrary Unit

Electrons

at spectrometer

time

HV-Switching MWPC

• tracking detector

600 ns

measurement

prompt

Unit

approx. 1500 V and 0 V

Yuta Higashino (Aoki lab)

-0.2

-0.1

0.1

x [cm]

-0.2

-0.

-0.1

200

0.1

x [cm]

200

HV-Switching MWPC

 Create a mode waveform and subtract it from the signal waveform

- 青 : Signal waveform from strip
- 赤: Mode waveform
- 黒 : Subtracted waveform

• Delayed noise hits

 Observation of noise possibly caused by electrons emitted by the large number of argon ions produced at the timing of the incoming prompt burst

⇒ Suppressed by addition of methylal(prototype)

Comissionig

Momentum calibration for DeeMe experiment

Comissioning

• One MWPC that had been prone to discharges for some time was disconnected during the experiment.

Potential wire

 \implies stable operation after repair!

Anode wires and potential wires have crossed near the junction.

Momentum calibration for DeeMe experiment

Momentum Calibration

no correction

Momentum Calibration

- ▶ 2022/06
 - ★ 50 MeV/c
 - ★ 55 MeV/c
 - ★ 45 MeV/c
- ▶ 2022/12
 - ★ 50 MeV/c
 - ★ 52 MeV/c
 - ★ 48 MeV/c

Ø Michel from calibration sample

- 10 MeV/c(upstream)
 52.8 MeV/c(downstream)
- π_{e2} from calibration sample
 - 40 MeV/c(upstream)
 69.3 MeV/c(downstream)
 - 25 MeV/c(upstream)
 69.3 MeV/c(downstream)
 Yuta Higashino (Aoki lab)

- Momentum reconstruction results obtained
- Understanding of distribution is under analysis

Momentum Calibration

- Addition of methylal
 - First test on a actual machine
- Confirmation of hit rates
 - Tendency for many hits on second and third MWPCs
- Dependent on prompt timing
 - Delayed noise hits or real hits

Summary and Prospects

- DeeMe experiment is underway at J-PARC MLF
 - We confirmed that the device works as a whole.
 - Momentum calibration
 - ★ Michel decay positron from proton target
 - * Michel decay positron from calibration target(kapton)
 - * π_{e2} decay positron from calibration target(Alminum)
 - ► Data acquisition in 2022/06 and 2022/12.
 - * For the first time, measurements were made using methylal on actual machine.
 - \star We confirmed that momentum reconstruction by tracking is possible.
- Future Prospects
 - Evaluating the impact of delayed noise hits
 - Understanding tendency for many hits on second and third MWPCs
 - Understanding momentum distribution

Backup

高レート耐性 MWPC

Table 1: 高レート耐性 MWPC の設計値 (713-type/724-type)

アノードワイヤー	物質	金メッキタングステン-レニウム
	直径	15 μ m
	本数	144/136
	張力	41 g
ポテンシャルワイヤー	物質	金メッキタングステン
	直径	50 μ m
	本数	145/137
	張力	80 g
ワイヤー間距離 (アノード・ポテンシャル)		0.7 mm / 0.75 mm
× 軸方向読み出しカソードストリップ	物質	アルミマイラー
	幅	3.0 mm
	本数	80
y 軸方向読み出しカソードストリップ	物質	アルミマイラー
	幅	15 mm
	本数	16
カソード面-ワイヤー面間距離		3.0 mm

遅延ヒットメカニズム

Momentum calibration for DeeMe experiment

遅延ヒットの削減

- 電子捕獲反応
 - 電気陰性度の高い原子・分子が電子と結合し陰 イオンを形成
 - ▶ 放出された電子がアノードに到達するのを阻止
- 荷電交換反応
 - ▶ アルゴンイオンと有機ガス分子が電荷を交換
 - ▶ アルゴンイオンがカソードに到達するのを阻止

カソード

2軸ロボットとチェレンコフカウンターの組み合わせ

● 105 MeV/c の電子とミュオンを分別

• ビームプロファイルの一例

