Development status of Ultra-low latency online event selection trigger system in COMET Phase - I

Masaki Miyataki

2022/12/22

Contents

- COMET Phase-I
- Online trigger system
- CDC trigger chain test
- CyDet trigger chain test
- New online event classification algorithm

COMET Phase-I experiment

- Purpose : Search for μ -e conversion in an Al target
 - Signal : monoenergetic 105 MeV electron
- Single event sensitivity : 3.0×10^{-15} (100 times the current sensitivity)
- Detector : Cylindrical detector system
 - \cdot electron momentum and timing measurements

CyDet : Cylindrical detector system

CDC (Cylindrical Drift Chamber)

- Measure the particle momentum
 - 4986 sense wires, 20 stereo layers

CTH (Cylindrical Trigger Hodoscope)

- Measure the electron timing
- Double layered Scintillation counters to make a primary trigger signal μ

CTH trigger rate ~ 91 kHz (expectation)

- 4 fold coincidence
- low-E electron dominant

Online trigger system

Accelerator clock

%Yu Nakazawa PhD Thesis Fig2.12

Online trigger system

Accelerator clock X-ray monitor system Cosmic-ray veto sytem CDC FCT Interface FanIn/Out FC7 FCT RECBE CDC 4986 ch x 7 x 104 COTTRI MB COTTRI CDC FE x 10 **Network** COTTRI MB СТН СОТ 192 ch FE CTH FE x 10

- RECBEs generate the 2 bit dE/dx information and send it @10 MHz
- COTTRI CDC system
 - FE : hit classification based on local/neighboring features.
 - Convert 2 bit data to GBDT scores in 400 ns integration time window
 - MB : event classification with the global feature.
 - Sums up the GBDT scores and makes the CDC trigger decision @10 MHz

Latency measurement

Latency (RECBE - COTTRI CDC system - FC7 - FCT · RECBE I/F - RECBE) is ~1.9 µs.

Online trigger system

Accelerator clock X-ray monitor system Cosmic-ray veto sytem CDC FCT Interface FanIn/Out FC7 FCT RECBE CDC 4986 ch x 7 x 104 COTTRI MB COTTRI CDC FE x 10 DAQ Network COTTRI MB СТН COTTR 192 ch FE CTH FE x 10

Latency ~ 2.1 μ s There is no increase in delay due to the coincidence trigger.

Other preliminary results of FC7 coincidence trigger

Trigger number continuity check results

New online event classification algorithm

To improve signal acceptance, increase trigger efficiency, and widen the measurement time window

14

The current trigger system has a trigger rate above 13 kHz for 500 ns start

The current CDC trigger algorithm

= hit classification by ML + event classification by counting signal-like hits

New CDC trigger algorithm under development

= hit classification by ML + event classification by Neural Network

Neural network based event classification¹⁵

New CDC trigger algorithm under development

= hit classification by ML + event classification by Neural Network

 By using the score map as input to the Neural network, pattern recognition of the trajectory drawn by the signal electrons can be introduced for event classification.

Model construction

and implemented it into COTTRI MB's firmware.

ILA : COTTRI MB

COTTRI MB

QMLP Classification

BG score < Signal score 0.08 0.95

17

COTTRI FE

Score sum

(data compression)

1 MANTAL SA

Input event info.

data

Compressed (

Neural Network test results

software and hardware predicted values are in perfect agreement

Summary

- CDC trigger chain test was conducted.
 - Latency ~ 2 μ s
- CyDet trigger chain test was conducted.
 - The FC7 trigger was successfully issued and distributed to whole CyDet trigger system.
 - Latency ~ 2 μ s
 - Many tests were carried out. The analysis is ongoing.
- New online event classification study is ongoing.
 - Neural network model that classifies the signal electron event and background event was constructed.
 - The trained model was successfully implemented on FPGA.
 - Software and hardware prediction scores are in perfect agreement.

cth trigger delay(ns)

cth trigger delay(ns) cth trigger delay(ns)

Trigger algorithm

The current CDC trigger algorithm

- 1. Set the CDC active section for each segment of CTH
- 2. Within each active section, count hits that exceed the score threshold
- 3. CDC trigger is issued when the count exceeds the threshold.

New CDC trigger algorithm under development

- 1. Set the CDC active section for each segment of CTH
- 2'. Execute Neural Network inference w/ score information of each active section as inputs
- 3'. CDC Trigger is issued based on <u>Neural Network classification</u>.

Signal and BG hits

Signal-hit characteristics

- Contained helical tracks
- Single hit in the same wire
- MIP-level energy loss

Background-hit characteristics

- Low energy electrons
 - Interaction of gamma rays at the CDC walls
 - Helical trajectory contained in the same cell
 - Multi hits in the same wire
- Protons (from muon nuclear capture)
 - Momentum higher than 100MeV/c
 - Large energy loss
 - ~40 protons/beam-pulse

Hit classification

*GBDT = Gradient Boosted Decision Tree

Machine learning algorithm (GBDT*) to score hit information for

each wire based on energy loss and local patterns

	CDC config	BG hit 占有率	ワイヤーヒット score情報	Active section
現実	20 layer x ~250 cell	~20 %	6 bit	~1500 ch
本スタディ	18 layer x 180 cell	5%	1 bit	960 ch

QMLP module simulation

Xilinx vivado simulationによりQMLP moduleのlatencyと出力を確認

信号イベント情報を入力した時のwaveform

latency, score出力予想通り😎

27

Input event

High level synthesis for machine learning ²⁸

Fast inference of deep neural networks in FPGAs for particle physics Fig1.

https://dx.doi.org/10.1088/1748-0221/13/07/P07027

FPGA programing Flow

Neural Network on FPGA

Correspondence between Neural Network operation and FPGA resources

ハードウェア制約

220 mm

信号電子が軌跡を残すのは CDCの約1/3領域

Firmware

COTTRI Front-Ener

Firmware

COTTRI Front-Ene

COTTRI FE to COTTRI MB data format

- 34
- Maximum data transfer = 2.4 Gbps/lane x 2lane x 0.8 = 3.84 Gbps
- Data format : 1 header & 10 data packets

1 frame @ 10 MHz

Bit	31	30 29 28 27 26 25	24	23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8	7 6 5 4 3 2 1 0	
Header	0	Parity bits	1	Sent number	Board ID	
Score	0	Parity bits	0	RECBE 9		
	0	Parity bits	0	RECBE 8		
	0	Parity bits	0	RECBE 7		
	0	Parity bits	0	RECBE 6		
	0	Parity bits	0	RECBE 5		
	0	Parity bits	0	RECBE 4		
	0	Parity bits	0	RECBE 3		
	0	Parity bits	0	RECBE 2		
	0	Parity bits	0	RECBE 1		
	0	Parity bits	0	RECBE 0		

COTTRI FE to COTTRI MB data format For the preliminary study

35

1 frame @ 10 MHz

Bit	31	30 29 28 27 26 25	24	23 22 21 20 19 18	17 16 15 14 13 12	11 10 9 8	7 6	5 4 3 2 1 0
Header	0	Parity bits	1	Sent number			Board ID	
Score	0	Parity bits	0	Input39	Input38	Input3	37	Input36
	0	Parity bits	0	Input35	Input34	Input3	3	Input32
	0	Parity bits	0	Input31	Input30	Input2	29	Input28
	0	Parity bits	0	Input27	Input26	Input2	25	Input24
	0	Parity bits	0	Input23	Input22	Input2	21	Input20
	0	Parity bits	0	Input19	Input18	Input1	7	Input16
	0	Parity bits	0	Input15	Input14	Input1	3	Input12
	0	Parity bits	0	Input11	Input10	Input	9	Input8
	0	Parity bits	0	Input7	Input6	Input	5	Input4
	0	Parity bits	0	Input3	Input2	Input	1	Input 0

分類器がSignal eventであると予測したとき、その予測が正しいのは98%

全てのSignal eventの80%を検出

分類器がSignal eventであると予測したとき、その予測が正しいのは98%

全てのBG eventの20%を誤ってSignal eventであると分類