Thin scintillation counter with a new readout method for KOTO

Keita Ono
Yamanaka lab M2
2022/12/22 Year-end presentation

J-PARC КОTO Experiment

Search for the rare $K_{L} \rightarrow \pi^{0} \nu \bar{\nu}$ decay

- Direct CP process

Good probe
for new physics search

- Small theoretical uncertainty ($\sim 2 \%$)

Signature of this decay
$\left(\pi^{0} \rightarrow\right) 2 \gamma \rightarrow$ Csl calorimeter $+$
Nothing \rightarrow Veto detectors

Charged K background

K^{+}decay : Largest background in 2016-2018
\Rightarrow Installed a charged particle detector (Upstream Charged Veto) in the beam in 2020

Current UCV

Veto detectors

$$
\text { Main contribution : } K^{+} \rightarrow \pi^{0} e^{+} \nu
$$

Key feature

- Low mass detector \rightarrow a plane of $\mathbf{0 . 5 - m m}$ thick scintillation fibers
\bullet Inefficiency $\sim \mathbf{8 \%} \rightarrow \times \sim 1 / 10 K^{+}$background reduction

Problem on current UCV

- Installing 0.5 -mm-thick scintillator in the neutral beam
\Rightarrow Increased other backgrounds
Ex) scattered $K_{L} \rightarrow 2 \gamma$
- Due to scattering of neutral particle
\Rightarrow Increased the loss of signal
- Due to (1) high counting rate of UCV itself
(2) scattered neutral particle
hitting other veto detector

$$
\text { Neutral particle }(n, \gamma)
$$

- $\times 1 / 10 K^{+} \mathrm{BG}$ reduction \Rightarrow Need further reduction in the near future

Developing a new version of UCV

Film UCV

Thinner + more sensitive detector

Q: How do we achieve it?
A : Use 0.2-mm-thick plastic scintillator film $+$
12- μ m-thick Aluminized mylar

Total thickness : $0.5 \mathrm{~mm} \Rightarrow \sim 0.2 \mathrm{~mm}$
Inefficiency: 8\% \Rightarrow 1\%
$K^{+} B G$ rejection: $\sim 1 / 10 \Rightarrow 1 / 100$

Light collection method

Q : How do we get enough light yield?
A : Use the scintillation light escaping from its surface

- Reflect and collect light with Al mylar

Optical design

- There were two optical designs

Result of ray tracing simulation

	1. Hexagonal type	2. Rectangular type
Shape		
ight yield Ratio	1.26 (14.6 p.e.)	$1(11.6$ p.e.)
Threshold (ineff 1\%)	6 p.e.	4 p.e.

How about the actual performance ?
Evaluated the performance with an electron beam

Performance test with electron beam

Objective

(1) light yield, inefficiency
(2) comparison between hexagonal and rectangular types
(3) timing resolution

Experimental setup
e^{-}beam
: $20 \mathrm{~mm} \times 30 \mathrm{~mm}$ counter : $50 \mathrm{~mm} \times 60 \mathrm{~mm}$ counter for time reference

Evaluation of light yield

- Determined the peak height in each channel in a 100 ns time window

Peak height $=$ Maximum - Pedestal

- Convert Peak height to \# of p.e. with 1 p.e. calibration data

- Calculate total light yield of UCV

Light yield and inefficiency : hexagonal type

Inefficiency

Light yield : ~ 20 p.e./MIP
Inefficiency : <1\% inefficiency with threshold < 0.6 MIP

Hexagonal vs rectangular types

- Discrepancy between data and simulation is under study

Evaluation of timing resolution

- Calculated Constant Fraction Timing(CFTime) $T[j]$ for each channel
- Calculated the UCV timing ($T_{U C V}$)

Definition : Average weighted by light yield

$$
T_{U C V}=\frac{\Sigma T[j] \cdot N_{p . e .}[j]}{\Sigma N_{p . e .[}[j]}
$$

$T[j]$: timing of channel j
$N_{p . e .}[j]$: light yield of channel j

- Timing $\Delta t=T_{U C V}$ - reference counter Timing

Result : Timing Resolution

- Selected events with light yield $\geqq 0.5$ MIP

Timing Resolution $\sigma \sim 1.1 \mathrm{~ns}$

Conclusion and Prospect

Conclusion

- Upgrading charged particle detector (UCV) : Film UCV
$0.2-\mathrm{mm}$-thick plastic scintillator $+12-\mu \mathrm{m}$-thick AI mylar
- Performance test with e^{-}beam

Light yield : ~ 20 p.e. /MIP (at hexagonal type)
Inefficiency : Achieved < 1% inefficiency at < 0.6 MIP threshold
Timing resolution : $\sigma \sim 1.1 \mathrm{~ns}$

Prospect

- Will Install this detector in the KOTO beam line in next year

Backup

Design of new UCV

- Size : $160 \times 160 \mathrm{~mm}^{2}$
\Rightarrow Large enough to cover the beam
- Structure of optical box (Al mylar)
\Rightarrow Collect photons with a few reflections
- Readout by several PMTs
\Rightarrow Get large area of photocathode
- Mirror around photocathodes
\Rightarrow Increase light yield

1 p.e. calibration

- Used LED light through fibers

Example of 1 p.e. distribution

ADC counts

Signal readout

- Total \# of PMT channels : 14 for hexagonal type (12 for rectangle type)
- Used sum Amplifier (talk by Kawata) Sum 2 signals on the same side
(Due to the shortage of ADC channel)

EX) hexagonal type

\# of p.e distribution for each ch

1~4 p.e. contribution was observed for each channel Calculated total light yield

Deformation of optical box

Light yield is Likely to change

 due to deformation of shape of optical boxTried to change the shape of optical box as much as possible

1. Original

Widened the gap

2. Dent

3. Dent + gap

Compared the light yield and inefficiency

Result

Correlation between oneside and bothside

Timing resolution of reference center

Assuming that the resolutions of 2 channel is same

$$
\sigma_{1}=\sigma_{2}=\sim 0.1 \mathrm{~ns}
$$

Contribution of emitted light

- Compare the light yield between w and w/o mask

