Thin scintillation counter with a new readout method for KOTO

Keita Ono Yamanaka lab M2 2022/12/22 Year-end presentation

- Direct *CP* process
- Rare decay ($BR_{SM} = 3 \times 10^{-11}$)

Signature of this decay

Veto detectors 2022/12/22

Charged K background *K*⁺ **decay** : Largest background in 2016-2018 \Rightarrow Installed a charged particle detector (Upstream Charged Veto) in the beam in 2020

Current UCV

Key feature •Low mass detector \rightarrow a plane of 0.5-mm thick scintillation fibers • Inefficiency ~ 8% \rightarrow x ~1/10 K⁺ background reduction

Year-end presentation

Problem on current UCV

Installing 0.5-mm-thick scintillator in the neutral beam

⇒ Increased other backgrounds

- Due to scattering of neutral particle

\Rightarrow Increased the loss of signal

- Due to 1) high counting rate of UCV itself
 - 2 scattered neutral particle

Developing a new version of UCV

Year-end presentation

Neutral particle(n, γ) hitting other veto detector

• $\times 1/10 K^+$ BG reduction \Rightarrow Need further reduction in the near future

Keita Ono

Film UCV

Thinner + more sensitive detector

- Q: How do we achieve it?
- A : Use 0.2-mm-thick plastic scintillator film
 - 12-µm-thick Aluminized mylar
 - Total thickness : $0.5 \text{ mm} \Rightarrow \sim 0.2 \text{ mm}$ Inefficiency : $8\% \Rightarrow 1\%$ K^+BG rejection : $\sim 1/10 \Rightarrow 1/100$

Year-end presentation

Reflect and collect light with Al mylar

Year-end presentation

Keita Ono

Optical design

• There were two optical designs

1. Hexagonal type

2. Rectangular type

2022/12/22

How about the actual performance ?

Year-end presentation

Evaluated the performance with an electron beam

Keita Ono

Year-end presentation

Keita Ono

Evaluation of light yield

- Determined the peak height in each channel in a 100 ns time window
 - Peak height = Maximum Pedestal

• Convert Peak height to # of p.e. with 1p.e. calibration data

• Calculate total light yield of UCV

Year-end presentation

Keita Ono

Example of waveform of a channel

Light yield and inefficiency : hexagonal type

of p.e. distribution

Light yield : ~ 20 p.e./MIP Inefficiency : <1% inefficiency with threshold < 0.6 MIP

Year-end presentation

Inefficiency

Hexagonal vs rectangular types Energy distribution

Discrepancy between data and simulation is under study

OSK

Inefficiency

Keita ONO

Evaluation of timing resolution

- Calculated Constant Fraction Timing(CFTime) T[j] for each channel
- Calculated the UCV timing (T_{UCV})

Definition : Average weighted by light yield

$$T_{UCV} = \frac{\Sigma T[j] \cdot N_{p.e.}[j]}{\Sigma N_{p.e.}[j]}$$

T[j]: timing of channel j

 $N_{p.e.}[j]$: light yield of channel j

• Timing $\Delta t = T_{UCV}$ - reference counter Timing

Year-end presentation

Keita Ono

• Selected events with light yield ≥ 0.5 MIP

Timing Resolution $\sigma \sim 1.1$ ns

Year-end presentation

ibution It_halfMIP				
	Entries	52451		
	Mean	49.63		
	Std Dev	1.366		
	χ^2 / ndf	28.84 / 9		
	Prob	0.0006886		
	Constant	3507 ± 26.3		
	Mean	49.34 ± 0.1	.01	
	Sigma	1.117 ± 0.0)19	
	<u></u>	75 80	ns	5

Keita Ono

2022/12/22

14

Conclusion and Prospect

Conclusion

- Upgrading charged particle detector (UCV) : Film UCV 0.2-mm-thick plastic scintillator + 12-µm-thick Al mylar
- Performance test with e^- beam Light yield : ~ 20 p.e. /MIP (at hexagonal type) Timing resolution : $\sigma \sim 1.1$ ns Prospect
- Will Install this detector in the KOTO beam line in next year

Inefficiency : Achieved < 1% inefficiency at < 0.6 MIP threshold

2022/12/22

15

Backup

Year-End Presentation

2021 12/22

Design of new UCV

- Size : $160 \times 160 \text{ mm}^2$ \Rightarrow Large enough to cover the beam
- Structure of optical box (Al mylar) \Rightarrow Collect photons with a few reflections
- Readout by several PMTs \Rightarrow Get large area of photocathode
- Mirror around photocathodes \Rightarrow Increase light yield

2022/12/22

17

1 p.e. calibration

• Used LED light through fibers

Example of 1p.e. distribution

• Adjusted the gains of PMTs 1 p.e. ~ 30 ADC counts

Year-end presentation

Keita Ono

Signal readout

- Used sum Amplifier (talk by Kawata) Sum 2 signals on the same side

(Due to the shortage of ADC channel)

EX) hexagonal type

Year-end presentation

• Total # of PMT channels : 14 for hexagonal type (12 for rectangle type) ΡΜΤΟ Sum Readout PMT1 Beam ch6:(10,11) ch4:(7) ch5:(8,9) ch7:(12,13)

In Total, 8 ch for hexagonal type (6ch for rectangle)

Keita Ono

1. Original

2. Dent

Compared the light yield and inefficiency

Year-end presentation

Tried to change the shape of optical box as much as possible

Widened the gap

3. Dent + gap

Result

Year-end presentation

Keita Ono

2022/12/22

Timing resolution of reference center

Assuming that the resolutions of 2 channel is same

 $o_1 = c$

Year-end presentation

$$\sigma_2 = \sim 0.1 \, \text{ns}$$

2022/12/22

Contribution of emitted light

Compare the light yield between w and w/o mask

