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ATLAS EXPERIMENT AT THE LARGE HADRON COLLIDER

ATLAS

CMS
The Higgs Boson was 
discovered in 2012 by ATLAS 
and CMS, and this year marked 
the 10 year anniversary.

ATLAS started data taking 
this July (for LHC Run 3), 
after ~3 years of shutdown.
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HIGGS BOSON COUPLING STRENGTH

?

?

?

?

The Higgs to Boson/Fermion Coupling Strength 

Source- ATL-COM-PHYS-2022-098, 10 years 
with the Higgs Boson: A detailed picture of 
it’s interactions from the ATLAS experiment.
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PROBING THE HIGGS TO b/c QUARK COUPLING
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THE VH, H bb AND VH, H cc ANALYSES→ →
So far we had 3 independent analysis using the full Run-2 data set,

VHbb Resolved (paper) VHbb Boosted (paper) VHcc (paper) 
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https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HIGG-2018-51/
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HIGG-2018-52/
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HIGG-2021-12/
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And right now we’re aiming for 3 ➡ 1,

VHbb Resolved (paper) VHbb Boosted (paper) VHcc (paper) 

Combination VH-Legacy Analysis

THE VH, H bb AND VH, H cc ANALYSES→ →

❖ Simultaneous measurement of the signal strengths. 

❖ Harmonize and improve of the “best practices” from all the 3 analysis. 
๏ One of them is the use of truth flavor tagging, which I will be talking about today.

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HIGG-2018-51/
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HIGG-2018-52/
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HIGG-2021-12/
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FLAVOR TAGGING
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D-meson             Inputs to the 
b-tagging algorithm

  Jet Tagging Efficiency ( ) =ϵjet
Number of tagged jets of a flavor 

Total number of jets of the same flavor

Flavor tagging is done using a set of machine learning based algorithms (called b-tagging 
algorithms) which exploit B-hadron decay features to identify jets.
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DIRECTLY TAGGING THE JETS

Let’s say we have 1000 events with c-jets, and  is 20% (c-tight WP)ϵjet

Only 40 
events

960 “good” events are discarded

• Hard to see actual distribution 
• Cannot obtain reliable modeling 

uncertainties 
• Limited stat for MVA training leads 

to overtraining (Johnny's talk) 
• Not using MC samples effectively 

2 c-tag c jets 

Not 2 c-tag c jets 

4%

96%

Ev
en

ts

Kinematic Variable

c jet 
percentage 

c jet percentage 20%

20%

4%

96%

Good here means that these events model the physics 
processes well, but just didn’t pass the tagging threshold. 

https://indico.cern.ch/event/1078614/contributions/4571099/attachments/2328899/3968274/Boosted%202L%20MVA%20TruthTagged%20Hyperparameter%20study(3).pdf
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EVENT WEIGHTING METHOD (TRUTH TAGGING)
Same problem, we look in a different way: What’s the probability of getting a  

2 c-tag event?

P(2 c-tag) = 
ϵjet 1 ⋅ ϵjet 2

Distributions are modeled much better

P(2 c-tag) W
ei
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d 
Ev

en
ts

All events

P(2 c-tag) 

Kinematic Variablec jet percentage 

c jet percentage 20%

20%

96%

4%

A more general equation is:

P = ∑
(k1,...,kNjet)∈M

Njet

∏
i=1

(1 − ki + (−1)1+ki ϵi) M = (k1, . . . , kNjet) |ki ∈ {0,1},
Njet

∑
i=1

ki = nb/cwhere

Tagging efficiency of each jet
A set that samples all possible permutations of jets in the 
event, with the constraint that they are are b or c tagged.

Tag or not
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EVENT WEIGHTING METHOD (TRUTH TAGGING)
Same problem, we look in a different way: What’s the probability of getting a  

2 c-tag event?

P(2 c-tag) = 
ϵjet 1 ⋅ ϵjet 2

Distributions are modeled much better

P(2 c-tag) W
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Kinematic Variable

However, for this method to work, we need an accurate parametrization of ϵjet
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  ATLAS Simulation work in progress

PARAMETRIZING  WITH 2D HISTOGRAMS (EFF.MAPS)ϵjet

Maps are based on jet  and 
, most dominant  parameters 

for jet-tagging efficiency.

pT
η
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However, this method wasn’t 
accurate enough 

• The  depends on multiple 
parameters ➡ but we cannot 
increase the dimensions (curse of 
dimensionality) 

• Tagging efficiency is affected by 
jet-jet dependencies ➡ Needed a 

 correction

ϵjet

ΔR = Δϕ2 + Δη2
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  ATLAS Simulation work in progress

Tracks from nearby b-jet 
entering c-jet ➡  
Affect tagging efficiency

For close by jets where 
 is smallΔR True c-jet

True b-jetB-Meson

PARAMETRIZING  WITH 2D HISTOGRAMS (EFF.MAPS)ϵjet

Maps are based on jet  and 
, most dominant  parameters 

for jet-tagging efficiency.

pT
η

https://en.wikipedia.org/wiki/Curse_of_dimensionality
https://en.wikipedia.org/wiki/Curse_of_dimensionality
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Had to attribute some systematics 
here. 
As you can see, truth tagging had a 
large contribution to the 
experimental uncertainties.

PARAMETRIZING  WITH 2D HISTOGRAMS (EFF.MAPS)ϵjet

Referred from the previous VHcc analysis paper

Source of uncertainty µVH (cc̄) µVW (cq) µVZ (cc̄)

Total 15.3 0.24 0.48

Statistical 10.0 0.11 0.32

Systematic 11.5 0.21 0.36

Statistical uncertainties

Signal normalisation 7.8 0.05 0.23

Other normalisations 5.1 0.09 0.22

Theoretical and modelling uncertainties

V H (! cc̄) 2.1 < 0.01 0.01

Z + jets 7.0 0.05 0.17

Top quark 3.9 0.13 0.09

W+ jets 3.0 0.05 0.11

Diboson 1.0 0.09 0.12

V H (! bb̄) 0.8 < 0.01 0.01

Multi-jet 1.0 0.03 0.02

Simulation samples size 4.2 0.09 0.13

Experimental uncertainties

Jets 2.8 0.06 0.13

Leptons 0.5 0.01 0.01

E
miss

T
0.2 0.01 0.01

Pile-up and luminosity 0.3 0.01 0.01

Flavour tagging

c-jets 1.6 0.05 0.16

b-jets 1.1 0.01 0.03

light-jets 0.4 0.01 0.06

⌧-jets 0.3 0.01 0.04

Truth-flavour tagging
�R correction 3.3 0.03 0.10

Residual non-closure 1.7 0.03 0.10

Hence, we needed a new approach

However, this method wasn’t 
accurate enough 

• The  depends on multiple 
parameters 

• Tagging efficiency is affected by 
jet-jet dependencies ➡ Needed a 

 correction

ϵjet

ΔR = Δϕ2 + Δη2

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HIGG-2021-12/
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USING GNN’S FOR PARAMETRIZING ϵjet Graph Neural 
Networks (GNN)

 pT, η, ϕ,
flavor, . . .

pT, η, ϕ, flavor, . . . pT, η, ϕ, flavor, . . .

pT, η, ϕ, flavor, . . .
pT, η, ϕ, flavor, . . .

Edges set 
as ΔR

• Each node is set as a jet 
• Parameters set as input 

features

✓ GNN’s are able to handle multiple input parameters 

• Currently we’re using 13 parameters: flavor, pile-up (Actual ), bH- , 
bH-  , bH- , bH- , cH- , cH-  , cH- , cH-  

✓ The model is trained for all jets ➡ Jet by jet dependencies are also included 
๏ However, GNN’s are not easy to interpret 

pT, η, ϕ, μ m
pT η ϕ m pT η ϕ
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ATL-PHYS-PUB-2022-041

ATLAS PUB Note

15th August 2022

Flavour Tagging E�ciency Parametrisations with
Graph Neural Networks

The ATLAS Collaboration

The identification of jets containing 1-hadrons is obtained through dedicated flavour-tagging
algorithms and is crucial for the physics program of the ATLAS experiment. The performance
of the flavour-tagging algorithm is such that the statistical precision of the simulated samples
is reduced when flavour tagging is applied, in particular when requiring many tagged jets
per event. The truth-flavour tagging approach aims at increasing the statistical power of the
simulated samples after the event selection. The method is based on a per-event weighting,
computed according to the probability for the given event to contain tagged jets. This note
describes truth-flavour tagging based on e�ciency maps and a novel implementation based on
Graph Neural Networks. The second approach is demonstrated to also capture correlations
among jets in the same event, improving the overall performance of the truth-flavour tagging
method.

© 2022 CERN for the benefit of the ATLAS Collaboration.
Reproduction of this article or parts of it is allowed as specified in the CC-BY-4.0 license.

If you’re interested in learning about the 
concept in more depth, please check 
the public note here.

Small clarification: the public note shows 
the application to boosted topology  
background , but it is the same for resolved 
topology as well.

tt̄

ATLAS PUBLIC NOTE

https://cds.cern.ch/record/2825433?ln=en
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IN SUMMARY
❖ Direct selection methods don’t provide enough statistics to model restricted 

phase spaces due to low statistics ➡ Using event weighting methods utilizes 
the whole sample set and model distributions better. 

❖ We need an accurate modeling of  for the event weighting method. 

๏ In previous analysis, we used 2-D Histograms to model  , but it couldn’t model 
 accurately enough. 

๏ It was seen that GNN’s (which can learn multiple parameters which affect  ) 
manages to model the  well. 

❖

ϵjet

ϵjet
ϵjet

ϵjet
ϵjet
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