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ATLAS EXPERIMENT AT THE LARGE HADRON COLLIDER
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== 2 ATLAS started data taking
e this July (for LHC Run 3),
after ~3 years of shutdown.

The Higgs Boson was

discovered in 2012 by ATLAS 25m
and CMS, and this year marked

the 10 year anniversary.
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Source- ATL-COM-PHYS-2022-098, 10 years

HIGGS BOSON COUPLING STRENGTH e issesoso: 4 s e

it's interactions from the ATLAS experiment.

1st Gen. 2nd Gen. 3rd Gen l
The Higgs to Boson/Fermion Coupling Strength
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PROBING THE HIGGS T0 b/c QUARK COUPLING

0 Charged Lepton Channel 1 Charged Lepton Channel 2 Charged Lepton Channel

Using the Leptons as a trigger gives the best sensitivity

Two topologies based on the p; of the Higgs

A
Resolved (Low p}! Boosted (High p3' ) pl

/ b-hadron

o

AR = \/(A¢)2 " (Ar])z b-hadron
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BAC KGRUUNDS There are 5 main backgrounds

W/Z + Jets ] Single Top
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THE VH, H—>bhb AND VH, H—>cc ANALYSES

So far we had 3 independent analysis using the full Run-2 data set,
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https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HIGG-2018-51/
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HIGG-2018-52/
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HIGG-2021-12/
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THE VH, H—>bhb AND VH, H—>cc ANALYSES

And right now we’'re aiming for 3 = 1,

VHbb Boosted (paper) VHbb Resolved (paper) VHcc (paper)
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» Combination VH-Legacy Analysis <

R/

% Simultaneous measurement of the signal strengths.

% Harmonize and improve of the "best practices” from all the 3 analysis.

® One of them is the use of truth flavor tagging, which | will be talking about today.


https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HIGG-2018-51/
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HIGG-2018-52/
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HIGG-2021-12/
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FLAVOR TAGGING

Flavor tagging is done using a set of machine learning based algorithms (called b-tagging
algorithms) which exploit B-hadron decay features to identify jets.

@@ ®@@ @@®®® S® S

Displaced ® light jet
Tertiary OD-meson
Vertex b-jet c-jet
Displaced """"" O B-meson D-meson
Secondary =---eeeecmeiaeiieeccacneeaaaaaa. I”PUtS to ti?e
Vertex b-tagging algorithm
+<— Track related info = -
Primary — =====ee=n=- Q ------------------------------- o u-quark
Vertex b-quark c-quark (ord,s, gluon)

: .. Number of tagged jets of a flavor
Jet Tagging Efficiency (¢;,,) =

Total number of jets of the same flavor
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DIRECTLY TAGGING THE JETS

Let’s say we have 1000 events with c-jets, and €;,,is 20% (c-tight WP)

Cc jet percentage 20%

2 c-tag c jets Only 40

.............. i
> c events

----------------- e 0

: 20% 0

: Kinematic Variable

; o Cc jet

E i percentage » Hard to see actual distribution

. |

Not 2 c-tag c jets : * Cannot obtain reliable modeling

\ 4 uncertainties

960 ”good” events are discarded o Limited stat for MVA training leads

. to overtraining (Johnny's talk)
Good here means that these events model the physics i

processes well, but just didn’t pass the tagging threshold. * Not using MC samples effectively


https://indico.cern.ch/event/1078614/contributions/4571099/attachments/2328899/3968274/Boosted%202L%20MVA%20TruthTagged%20Hyperparameter%20study(3).pdf
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EVENT WEIGHTING METHOD (TRUTH TAGGING)

Same problem, we look in a different way: What'’s the probability of getting a
2 c-tag event?

Cc jet percentage 20%
P(2 c-tag) =

]et 1° ]et 2

E @
----------------- —— :
: 20% Lﬁ
: All events o
: b
: §&)
S gl el P(2 c-tag) " ~» §
E c jet percentage Kinematic Variable

Distributions are modeled much better
—— A more general equation is:

A set that samples all possible permutations of jets in the
Tagging efficiency of each jet event, with the constraint that they are are b or c tagged.

\ L
P= ) |[IO0-k+ED"e)| where m=-

(kl ..... k]\]]et)EM l=1

h'd

ky,,) 1% € (0.1}, Zk = 1y,

or not

(4
\ Tag

" S
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EVENT WEIGHTING METHOD (TRUTH TAGGING)

Same problem, we look in a different way: What'’s the probability of getting a
2 c-tag event?

Cc jet percentage 20%
P(2 c-tag) =

Ciet 1 ° €jer2

E @
----------------- —— :
: 20% Lﬁ
: All events o
: b
: §&)
S gl el P(2 c-tag) " ~» §
E c jet percentage Kinematic Variable

Distributions are modeled much better

However, for this method to work, we need an accurate parametrization of €iet
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PARAMETRIZING €j ot WITH 2D HISTOGRAMS (EFF.MAPS)

€ -

ATLAS Simulation work in progress jet
= 2.5 0.2
2
jS
5 20 ¢
S -
5 1.5 ¢

B 0.1
9 5 ps are b '
o 1.0 ¢ .
q - most dominan
E, 0.5 | r jet-tagging e

L

0

100 200 300 400

Jet Transverse Momentum p;(GeV)
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PARAMETRIZING €;,,

WITH 2D HISTOGRAMS (EFF.MAPS)

increase the dimensions (curse of
dimensionality)

, most dominant para

or jet-tagging effilawlc.:y.

€

ATLAS Simulati ki jet : ,
= 25 Bttt bt 0.2 However, this method wasn't
3 accurate enough
Y 2.0 ¢
5:2 sk * The €;,, depends on multiple
S - ' aps are based 0.1 parameters = but we cannot
O . B
ok
©
Q

©
S O
T T T T T T

LB 0 ° Tagging efficiency is affected by
100 200 300 400 jet-jet dependencies = Needed a
Jet Transverse Momentum p,(GeV) AR = \/Aq§2 + A’?Z correction
For close byjets where C’:\et « — Tracks from nearby b-jet
AR is small True entering c-jet =
Affect tagging efficiency



https://en.wikipedia.org/wiki/Curse_of_dimensionality
https://en.wikipedia.org/wiki/Curse_of_dimensionality
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PARAMETRIZING €,,, WITH 2D RISTOGRAMS (EFF.MAPS)

Source of uncertainty HVH(cE) HVW(cq) MVZ(cé) o I
— e T v However, this method wasn't
Statistical 10.0 0.11 0.32
Systematic s 021 036 accurate enough
Statistical uncertainties
Signal normalisation 7.8 0.05 0.23 The €et depends on mUItipIe
Other normalisations 5.1 0.09 0.22 J
Theoretical and modelling uncertainties pa rame te rs
VH(= cé) 2.1 <001 0.01 . oo .
Z+jets 70 005 017 Tagging efficiency is affected by
Top quark 3.9 0.13 0.09 . . .
W jets 30 005 ol jet-jet dependencies = Needed a
Diboson 1.0 0.09 0.12
VH(— bb) 0.8  <0.01 0.01 _ 2 2 ;
Multi-jet 1.0 003 002 AR = \/A¢ + An“ correction
Simulation samples size 4.2 0.09 0.13
Experimental uncertainties
Jets 2.8 0.06 0.13 . .
Leptons 05 001 00 Had to attribute some systematics
ETMSS 0.2 0.01 0.01
Pile-up and luminosity 0.3 0.0l 0.0l here.
c-jets 1.6 0.05 0.16 A t th t . h d
Fl taoei b-jets 1.1 0.01 0.03 S you Can see, tru agglng ad a
avour tagging light-jets 0.4 0.01 0.06 | ibuti h
s 03 ool oo arge contribution to the
. AR correction 3.3 0.03 0.10 xperimental un inties.
Truth-flavour tagging Residual non-closure 1.7 0.03 0.10 © pe ental uncertainties

Referred from the previous VHcc analysis paper Hence, we needed a new approach


https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HIGG-2021-12/
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USING GNN'S FOR PARAMETRIZING €iop oot

Networks (GNN)

[pT, n, ¢, flavor, . . . }

~
}~~

[pT, n, ¢, flavor, . .. J Edges set
g as AR

[ Prs 1, ¢9

flavor, . ..

N\

( pr. 1, &, flavor, ... ) * Each node is set as a jet

° Parameters set as input
features

v" GNN'’s are able to handle multiple input parameters

e Currently we're using 13 parameters: p, 11, @, flavor, pile-up (Actual u), bH-m,
bH-p;, bH-n, bH-, cH-m, cH-p;, cH-K, cH-¢
v The model is trained for all jets = Jet by jet dependencies are also included

® However, GNN’s are not easy to interpret
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ATLAS PUBLIC NOTE

ATL-PHYS-PUB-2022-041 N7

E
15th August 2022
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Flavour Tagging Efficiency Parametrisations with
Graph Neural Networks

The ATLAS Collaboration

The identification of jets containing b-hadrons is obtained through dedicated flavour-tagging
algorithms and is crucial for the physics program of the ATLAS experiment. The performance
of the flavour-tagging algorithm is such that the statistical precision of the simulated samples
is reduced when flavour tagging is applied, in particular when requiring many tagged jets
per event. The truth-flavour tagging approach aims at increasing the statistical power of the
simulated samples after the event selection. The method is based on a per-event weighting,
computed according to the probability for the given event to contain tagged jets. This note
describes truth-flavour tagging based on efficiency maps and a novel implementation based on
Graph Neural Networks. The second approach is demonstrated to also capture correlations
among jets in the same event, improving the overall performance of the truth-flavour tagging
method.

© 2022 CERN for the benefit of the ATLAS Collaboration.
Reproduction of this article or parts of it is allowed as specified in the CC-BY-4.0 license.

If you're interested in learning about the
concept in more depth, please check
the public note here.

Small clarification: the public note shows

the application to boosted topology tf
background , but it is the same for resolved
topology as well.


https://cds.cern.ch/record/2825433?ln=en

YAMANAKA GROUP & AOKI GROUP - YEAR END PRESENTATION 2022

20

IN SUMMARY

N/
) X g

L X4

Direct selection methods don’t provide enough statistics to model restricted
phase spaces due to low statistics = Using event weighting methods utilizes
the whole sample set and model distributions better.

We need an accurate modeling of ¢,,, for the event weighting method.

In previous analysis, we used 2-D Histograms to model ¢, , but it couldn’t model

€., accurately enough.

jet
It was seen that GNN's (which can learn multiple parameters which affect ¢, )

manages to model the ¢, well.
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