

HIGH ENERGY PHYSICS YAMANAKA GROUP

Studies on Higgs to charm quark search using the LHC-ATLAS experiment

YEAR END PRESENTATION - 22ND DECEMBER 2022

LAKMIN WICKREMASINGHE (D2)

ATLAS EXPERIMENT AT THE LARGE HADRON COLLIDER

HIGGS BOSON COUPLING STRENGTH

Source- ATL-COM-PHYS-2022-098, 10 years with the Higgs Boson: A detailed picture of it's interactions from the ATLAS experiment.

PROBING THE HIGGS TO b/c QUARK COUPLING

Using the Leptons as a trigger gives the best sensitivity

THE VH, $H \rightarrow bb$ and VH, $H \rightarrow cc$ Analyses

So far we had 3 independent analysis using the full Run-2 data set,

THE VH, $H \rightarrow bb$ and VH, $H \rightarrow cc$ Analyses

And right now we're aiming for $3 \Rightarrow 1$,

- Simultaneous measurement of the signal strengths.
- Harmonize and improve of the "best practices" from all the 3 analysis.
 - One of them is the use of *truth flavor tagging*, which I will be talking about today.

FLAVOR TAGGING

Flavor tagging is done using a set of machine learning based algorithms (called *b-tagging* algorithms) which exploit B-hadron decay features to identify jets.

Jet Tagging Efficiency (ϵ_{jet}) =

Number of tagged jets of a flavor

Total number of jets of the same flavor

DIRECTLY TAGGING THE JETS

Let's say we have **1000** events with c-jets, and ϵ_{jet} is **20%** (c-tight WP)

960 "good" events are discarded

Good here means that these events model the physics processes well, but just didn't pass the tagging threshold.

- Limited stat for MVA training leads to overtraining (<u>Johnny's talk</u>)
- Not using MC samples effectively

Event Weighting Method (Truth Tagging)

Same problem, we look in a different way: What's the **probability** of getting a 2 c-tag event?

Event Weighting Method (Truth Tagging)

However, for this method to work, we need an accurate parametrization of ϵ_{iet}

PARAMETRIZING ϵ_{jet} with 2D Histograms (EFF.Maps)

Jet Transverse Momentum *p*_T (GeV)

PARAMETRIZING ϵ_{jet} with 2D Histograms (EFF.Maps)

Jet Transverse Momentum p_T (GeV)

However, this method wasn't accurate enough

The €_{jet} depends on multiple
 parameters ⇒ but we cannot
 increase the dimensions (curse of
 dimensionality)

• Tagging efficiency is affected by jet-jet dependencies \Rightarrow Needed a $\Delta R = \sqrt{\Delta \phi^2 + \Delta \eta^2}$ correction

For close by jets where ΔR is small B-Meson True b-jet

Tracks from nearby b-jet entering c-jet ➡ Affect tagging efficiency

PARAMETRIZING ϵ_{jet} with 2D Histograms (EFF.Maps)

Source of uncertainty		$\mu_{VH(c\bar{c})}$	$\mu_{VW(cq)}$	$\mu_{VZ(c\bar{c})}$
Total		15.3	0.24	0.48
Statistical		10.0	0.11	0.32
Systematic		11.5	0.21	0.36
Statistical uncertainties				
Signal normalisation		7.8	0.05	0.23
Other normalisations		5.1	0.09	0.22
Theoretical and modelling uncertainties				
$VH(\rightarrow c\bar{c})$		2.1	< 0.01	0.01
Z + jets		7.0	0.05	0.17
Top quark		3.9	0.13	0.09
W+jets		3.0	0.05	0.11
Diboson		1.0	0.09	0.12
$VH(\rightarrow b\bar{b})$		0.8	< 0.01	0.01
Multi-jet		1.0	0.03	0.02
Simulation samples size		4.2	0.09	0.13
Experimental uncertainties				
Jets		2.8	0.06	0.13
Leptons		0.5	0.01	0.01
$E_{\mathrm{T}}^{\mathrm{miss}}$		0.2	0.01	0.01
Pile-up and luminosity		0.3	0.01	0.01
Flavour tagging	<i>c</i> -jets	1.6	0.05	0.16
	<i>b</i> -jets	1.1	0.01	0.03
	light-jets	0.4	0.01	0.06
	τ -jets	0.3	0.01	0.04
Truth-flavour tagging	ΔR correction	3.3	0.03	0.10
	Residual non-closure	1.7	0.03	0.10

Referred from the previous VHcc analysis paper

However, this method wasn't accurate enough

- The ϵ_{jet} depends on multiple parameters
- Tagging efficiency is affected by jet-jet dependencies \Rightarrow Needed a $\Delta R = \sqrt{\Delta \phi^2 + \Delta \eta^2}$ correction

Had to attribute some systematics here.

As you can see, truth tagging had a large contribution to the experimental uncertainties.

Hence, we needed a new approach

GNN's are able to handle multiple input parameters

- Currently we're using 13 parameters: p_T , η , ϕ , flavor, pile-up (Actual μ), bH-m, bH- p_T , bH- η , bH- ϕ , cH-m, cH- p_T , cH- η , cH- ϕ
- ✓ The model is trained for all jets → Jet by jet dependencies are also included
- However, GNN's are not easy to interpret

ATLAS PUBLIC NOTE

ATL-PHYS-PUB-2022-041 15th August 2022

Flavour Tagging Efficiency Parametrisations with Graph Neural Networks

The ATLAS Collaboration

The identification of jets containing *b*-hadrons is obtained through dedicated flavour-tagging algorithms and is crucial for the physics program of the ATLAS experiment. The performance of the flavour-tagging algorithm is such that the statistical precision of the simulated samples is reduced when flavour tagging is applied, in particular when requiring many tagged jets per event. The truth-flavour tagging approach aims at increasing the statistical power of the simulated samples after the event selection. The method is based on a per-event weighting, computed according to the probability for the given event to contain tagged jets. This note describes truth-flavour tagging based on efficiency maps and a novel implementation based on Graph Neural Networks. The second approach is demonstrated to also capture correlations among jets in the same event, improving the overall performance of the truth-flavour tagging method.

If you're interested in learning about the concept in more depth, please check the public note <u>here</u>.

Small clarification: the public note shows the application to **boosted topology** $t\bar{t}$ **background**, but it is the same for resolved topology as well.

© 2022 CERN for the benefit of the ATLAS Collaboration. Reproduction of this article or parts of it is allowed as specified in the CC-BY-4.0 license.

IN SUMMARY

- Direct selection methods don't provide enough statistics to model restricted phase spaces due to low statistics = <u>Using event weighting methods utilizes</u> <u>the whole sample set and model distributions better.</u>
- We need an accurate modeling of ϵ_{jet} for the event weighting method.
 - In previous analysis, we used 2-D Histograms to model ϵ_{jet} , but it couldn't model ϵ_{jet} accurately enough.
 - It was seen that GNN's (which can learn multiple parameters which affect ϵ_{jet}) manages to model the ϵ_{jet} well.

THANK YOU FOR YOUR ATTENTION

