

Development of a voltage supply circuit for PMTs used in the low mass charged particle detector for the KOTO experiment

Ayumu Kitagawa

2022/12/22 Year-End meeting

KOTO experiment

- Search for \mathscr{L} rare decay $K_L \rightarrow \pi^0 \nu \bar{\nu}$ @J-PARC >> Highly suppressed $Br(SM) = 3.0 \times 10^{-11}$ >> Small theoretical uncertainty $\Delta Br \sim 2\%$ \rightarrow Good probe for new physics!
- The signature of this decay is

>> $(\pi^0 \rightarrow 2\gamma) \Rightarrow$ CSI calorimeter >> "Nothing" \Rightarrow No signal at the hermetic veto detectors

Charged K background

• Main background in the 2016-2018 data analysis

$$>> K^{\pm} \to \pi^0 e^{\pm} \nu \to e^{\pm}(missing) + 2\gamma$$

<u>UCV</u>

- Upstream Charged Veto counter
 >> In-beam detector at the upstream of the KOTO detector
 - >> Veto charged particles
 - >> Goal : 99% reduction
- UCV design
 - >> Thin film scintillator
 - 0.2mm thick
 - 160 imes 160mm^2
 - >> Collect escaped light with 12µm-thick aluminized mylar
 - >> Read out with PMTs

UCV design

PMT holder

2022/12/22 Year-End meeting

Requirements for PMT

- Vacuum operation
- Readout ~20 p.e. / (1 Charged particle) by 14 PMTs
 >> Light uniformly enters each PMT
 >> Single p.e. counting
- High-rate tolerance

>> 1 p.e. enters each PMT at **2MHz** in physics run

Base part of the PMT

- Developed voltage divider circuit for PMT
- Read out signals with a thin coaxial cable (ϕ =1.1mm)
- Typical gain at $1.25kV: 2 \times 10^7$
- 1 p.e. peak is clear

Cooling mechanism

- Heat consumption = 1.5W / PMT
- Dissipate heat by Al-pipe and φ1/4–inch cooling water Cu pipe
 > Copper net wire between pipe and tube
- Monitor the temperature of each PMT base with thermistors

Water cooling pipe

- Cu pipe is held and thermally insulated from LECO-frame
- Prevent PMTs from coming out of holder

By Kotera

High-rate stability

• Gain needs to be stable during the physics run

>> 2 MHz hit rate on average

>> Hit rate = 1 p.e. rate on each PMT

>> Spike structure of the beam varies instantaneous rate

• Beam power will be upgraded from 64kW => 100kW (Rate will be $\times 1.6$)

High-rate stability

- Use 2 LEDs
 - >> (1) : Large pulse (\sim 100 p.e.) to monitor gain change
 - >> 2 : Random 1 p.e. signals
 - Change 1 p.e. rate by changing DC input voltage

High-rate stability

- Gain is stable within 1% below the rate of physics run
- Data taking time < 5min for each line

• : 1.1kV, Gain = 1.5×10^7

Summary

- UCV is an in-beam detector to veto upstream charged particles
- Readout signals with PMTs
- Developed PMT base part
 - >> Works in vacuum
 - >> Works in high-rate condition => Physics run is OK

Backup slides

Charged K background

• Main background in the 2016-2018 data analysis

$$>> K^{\pm} \to \pi^{0} e^{\pm} \nu$$

$$\to e^{\pm}(missing) + 2\gamma$$

PMT to be used

• R14095

> Compact PMT φ52mm
> No assembly type
> Low noise, clear 1 p.e. signal

