Simulation of Cylindrical Drift Chamber Detector Response in COMET Phase-I

2022 Aoki & Yamanaka Lab. Year End Workshop Sun Siyuan

Contents

- Introduction
- Cylindrical Drift Chamber (CDC) Detector Response
- Ionization & Drift
- Electronic response
- Summary

2

Cylindrical drift chamber (CDC)

CDC View

The CDC is arranged For: Momentum measurement

board RECBE

Particle Identification (e⁻, proton, etc.)

OMET

CDC

30om

Muon Stopping target

Motivation

- Detector response is important for CDC occupancy, track reconstruction.
- Current Geant4 simulation can not simulate gas detector process & electronic signal

CDC Detector Response Simulation Flow

• Garfield++ is used for the simulation

- Garfield++ can simulate: e⁺, e⁻, μ^+ , μ^- , π^+ , π^- , K⁺, K⁻, p⁺, p⁻, D⁺ (²H⁺), α^{2+}
- "Realistic" signal hits from sense wire instead of truth hits

Garfield++ Simulation With Different β

Electrons Drift in Gas Chamber

Drift Velocities are different at left corner

and right corner HEF-ex WS Siyuan SUN

μ

OMET

Cell Shape at $\beta = 120^{\circ}$

• Different cell shapes are obtained with/without magnetic field

Drift and Electric Field Map in 3D

- Field map is needed for 3D simulation.
- Feasibility under investigation for 3D field map

Delta Response Function

Delta response function

Induced Charge to Signal

OMFT

• Induced charge convoluted to signal by delta response

signal_e:time_e

Compare with Data

signal_e:time_e

RECBE Delta Response

Function Generator

RECBE

ADC output

- Test by Yu Nakazawa with pulsed function
- Tail information lost
- Better to redo...

How to obtain hits in CDC

- CDC response simulation with 2D model in Garfield++.
- Preliminary result shows different XT relation with/without magnetic field.
- 3D model of simulation under construction.
- Electronic simulations done to obtain signal waveforms.
- Problem remained: time delay in electronics, on wire, etc.
- To be continued...

Cylindrical drift chamber (CDC)

Table 7.1: Main parameters of the CDC.		
Inner wall	Length	1495.5 mm
	Radius	$496.0{\sim}496.5~{ m mm}$
	Thickness	$0.5 \mathrm{~mm}$
Outer wall	Length	1577.3 mm
	Radius	$835.0 \sim 840.0 \text{ mm}$
	Thickness	$5.0 \mathrm{~mm}$
Number of sense layers		20 (including 2 guard layers)
Sense wire	Material	Au plated W
	Diameter	$25~\mu{ m m}$
	Number of wires	4986
	Tension	$50~{ m g}$
Field wire	Material	Al
	Diameter	$126~\mu{ m m}$
	Number of wires	14562
	Tension	80 g
Gas	Mixture	He:i- C_4H_{10} (90:10)
	Volume	2084 L

• Stereo angle applied for layers: 64-75 mrad for longitudinal resolution

Cell structure

Cylindrical drift chamber (CDC)

• Large inner radius is designed to avoid DIO beam.

Properties of Simulation

- Most of number of electrons in a cluster stay in 1
- Nt (Number of Total ionized electrons) ~23.42/1.6cm = ~15/cm
- Np (Number of clusters in a track) ~12.5/cm

XT Simulation Compare with CRT

- 100k events
- Random position/direction tracks
- Square shaped cell

CRT analysis from Yohei

XT Simulation

180 μ m average spatial resolution got from simulation

1GeV Muon simulation

Cell Shape

• Cell shape affected by magnetic field

Region that ionized electrons can drift to the sense wire can be affected by magnetic field

How to define track length?

Cell Shape

XT vs DOCA>0 and DOCA<0

DOCA vs DriftDistance

1T beta 30° 1GeV muon

Delay effect shows in 1T simulation

HEF-ex WS Siyuan SUN

Error of DOCA Calculation in Simulation

Error of DOCA calculation is small between using straight line or curvature model for track.